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Abstract

In this paper, the behavior of a Griffith crack at the interface of a layer boned to a half plane subjected to a uniform

tension is investigated by use of the Schmidt method under the assumptions that the effect of the crack surface over-

lapping very near the crack tips is negligible and also there is a sufficiently large component of mode-I loading so that

the crack essentially remains open. By use of the Fourier transform, the problem can be solved with the help of two

pairs of dual integral equations in which the unknown variables are the jumps of the displacements across the crack

surfaces. To solve the dual integral equations, the jumps of the displacements across the crack surfaces are expanded in

a series of Jacobi polynomials. Numerical examples are provided to show the effects of the crack length, the thickness of

the material layer and the materials constants upon the stress intensity factor of the crack. As a special case in our

solution, we also give the solution of the ordinary crack in homogeneous materials. Contrary to the previous solution of

the interface crack problem, it is found that the stress singularities of the present interface crack solution are similar

with ones for the ordinary crack in homogeneous materials.

� 2004 Elsevier Ltd. All rights reserved.
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1. Introduction

In recent years, composite materials and adhesive or bonded joints are being used in wide range of

engineering field. The fracture of composites and bonded dissimilar materials is induced mainly from the

interfacial region because the angular corner of bonded materials induces singular stress and crack initi-

ation at the interface. Particularly flaws or cracks lying along the interface reduce the strength of the

structure significantly. Hence, problem of interface cracks in dissimilar materials is very important from the
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view point of interface strength and stress analysis of interface cracks have been treated in many papers

(England, 1965; Erdogan, 1965; Rice and Sih, 1965; Nisitani et al., 1993; Erdogan and Wu, 1993; Dhaliwal

et al., 1989; Das and Debnath, 2001; Das and Patra, 1998; Erdogan and Gupta, 1971; He et al., 1992). A

closed form solution of the interface crack problem was obtained in England (1965) by making suitable
integral representation of the complex potentials developed by Muskhelishvili (1953). However, it is well

known that the stress oscillatory singularity and overlapping of the crack surfaces appear near the interface

crack tip and these are quite different from ordinary cracks in homogeneous materials. The solutions in

Erdogan (1965), Rice and Sih (1965), Nisitani et al. (1993), Erdogan and Wu (1993), Dhaliwal et al. (1989),

Das and Debnath (2001), Das and Patra (1998), Erdogan and Gupta (1971) and He et al. (1992) also

contain the stress oscillating singularity as the same as in England (1965). Therefore, in comparison with the

ordinary crack problems, it is difficult to analyse accurately the interface crack problem and there are not

enough the data of stress intensity factors for interface cracks. In the papers Zhang (1989), Zhang (1986)
and Itou (1986), the stress oscillatory singularity and overlapping of the crack surfaces do not appear near

the interface crack tip for the opening interface crack mode. Some of the more significant results, partic-

ularly that concerning the discussion of the conditions leading to non-oscillating crack tip stress fields were

given in Comninou (1977), Gautesen and Dundurs (1987), Atkinson (1982), Atkinson (1982) and Achen-

bach et al. (1979). However, the interface crack model was changed, i.e. the crack tips were assumed to be

closed. In Achenbach’s work (Achenbach et al., 1979), the interface crack problem was also studied. Non-

oscillating crack tip stress fields were obtained in Achenbach et al. (1979). However, it was assumed that

there was an adhesive zone at the crack tips.
Mathematically, the solutions in England (1965) and Erdogan (1965) are exactly forms in spite of the

incomprehensibility in fracture mechanics. However, from an engineering viewpoint, it is more desirable to

seek a solution which is physically acceptable (Itou, 1986). In the present paper, the same problem which

was treated in Calhoun and Lowengrub (1978) is reworked by the use of a somewhat different approach,

named as the Schmidt method (Yan, 1967). It is a simple and convenient method for solving this problem.

The Fourier transform technique is applied and a mixed boundary value problem is reduced to two pairs of

dual integral equations in which the unknown variables are the jumps of the displacements across the crack

surfaces. To solve the dual integral equations, the jumps of the displacements across the crack surfaces are
expanded in a series of Jacobi polynomials. This process is quite different from those adopted in England

(1965), Erdogan (1965), Rice and Sih (1965), Nisitani et al. (1993), Erdogan and Wu (1993), Dhaliwal et al.

(1989), Das and Debnath (2001), Das and Patra (1998), Erdogan and Gupta (1971), He et al. (1992),

Comninou (1977), Gautesen and Dundurs (1987), Atkinson (1982), Atkinson (1982), Achenbach et al.

(1979) and Calhoun and Lowengrub (1978) as mentioned above. During the solving process, the mathe-

matical difficulties are not met, i.e. the oscillatory stress singularity and the overlapping of the crack sur-

faces do not meet. Contrary to the previous solution of the interface crack, it is found that the stress

singularity of the present interface crack solution is of the same nature as that for the ordinary crack in
homogeneous materials. As a special case, the solution of the present paper can be returned to the one of

the ordinary crack in homogeneous materials.
2. Formulation of the problem

It is assumed that there is a crack of length 2l at the interface of a layer bonded to a half plane, h is the
thickness of the layer. In terms of the rigidity modulus Gj ¼ lj, the Poisson’s ratio gj, the kj ¼

kjþ3lj
kjþlj

the

Lame coefficients kj and lj where j ¼ 1; 2 with 1 and 2 referring to the elastic layer and the lower half plane,
respectively. In the case of plane strain the stress–strain relations may be written in the form (the results for
plane stress may be derived easily by replacing the Poisson’s ratio gj, wherever it occurs by gj=ð1þ gjÞ)
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rðjÞ
x ¼ 2Gj

1� 2gj
ð1

�
� gjÞ

ouj
ox

þ ovj
oy

�
; ðj ¼ 1; 2Þ ð1Þ
rðjÞ
y ¼ 2Gj

1� 2gj
gj
ouj
ox

�
þ ð1� gjÞ

ovj
oy

�
; ðj ¼ 1; 2Þ ð2Þ
sðjÞxy ¼ Gj
ouj
oy

�
þ ovj

ox

�
; ðj ¼ 1; 2Þ ð3Þ
where rðjÞ
x , rðjÞ

y and sðjÞxy represent the Cartesian components of stress. uj and vj represent the Cartesian
components of displacement. The subscript j ¼ 1; 2 with 1 and 2 referring to the elastic layer and the lower
half plane throughout this paper, respectively. The governing differential equations can then be given as

follows:
2ð1� gjÞ
o2uj
ox2

þ ð1� 2gjÞ
o2uj
oy2

þ o2vj
oxoy

¼ 0; ðj ¼ 1; 2Þ ð4Þ
ð1� 2gjÞ
o2vj
ox2

þ 2ð1� gjÞ
o2vj
oy2

þ o2uj
oxoy

¼ 0; ðj ¼ 1; 2Þ ð5Þ
The problem demonstrated in Fig. 1 will be solved under the following boundary conditions (in this paper,
we just consider the perturbation field):
rð1Þ
y ¼ rð2Þ

y ¼ �r0; sð1Þxy ¼ sð2Þxy ¼ 0; jxj6 l; y ¼ 0 ð6Þ
v1 ¼ v2; u1 ¼ u2; rð1Þ
y ¼ rð2Þ

y ; sð1Þxy ¼ sð2Þxy ; jxj > l; y ¼ 0 ð7Þ
rð1Þ
y ¼ 0; sð1Þxy ¼ 0; jxj < 1; y ¼ h ð8Þ
uj ¼ vj ¼ 0; rðjÞ
y ¼ sðjÞxy ¼ 0 for

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 þ y2

p
! 1; ðj ¼ 1; 2Þ ð9Þ
where the r0 is a magnitude of the uniform tension.
Fig. 1. Geometry and coordinate system for an interface crack.
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3. Solution

Because of the symmetry, it suffices to consider the problem for x > 0; jyj < 1. Eqs. (4) and (5) can be
solved giving
u1ðx; yÞ ¼
2

p

Z 1

0

s�1½fA1ðsÞ � k�11 ½A1ðsÞ � B1ðsÞ�syge�sy þ fA2ðsÞ þ k�11 ½A2ðsÞ þ B2ðsÞ�sygesy � sinðsxÞds

ð10Þ

v1ðx; yÞ ¼
2

p

Z 1

0

s�1½fB1ðsÞ � k�11 ½A1ðsÞ � B1ðsÞ�syge�sy þ fB2ðsÞ � k�11 ½A2ðsÞ þ B2ðsÞ�sygesy � cosðsxÞds

ð11Þ

u2ðx; yÞ ¼
2

p

Z 1

0

s�1fA3ðsÞ þ k�12 ½A3ðsÞ þ B3ðsÞ�sygesy sinðsxÞds ð12Þ

v2ðx; yÞ ¼
2

p

Z 1

0

s�1fB3ðsÞ � k�12 ½A3ðsÞ þ B3ðsÞ�sygesy cosðsxÞds ð13Þ
where A1ðsÞ, B1ðsÞ, A2ðsÞ, B2ðsÞ, A3ðsÞ and B3ðsÞ are unknown functions to be determined by the boundary
conditions. Substituting Eqs. (10)–(13) into (1)–(3), it can be obtained
rð1Þ
y ðx; yÞ ¼ �2k�11 G1

p

Z 1

0

½fðk1 � 1ÞA1ðsÞ þ ðk1 þ 1ÞB1ðsÞ � 2½A1ðsÞ � B1ðsÞ�syge�sy

þ fðk1 � 1ÞA2ðsÞ � ðk1 þ 1ÞB2ðsÞ þ 2½A2ðsÞ þ B2ðsÞ�sygesy � cosðsxÞds ð14Þ

sð1Þxy ðx; yÞ ¼
�2k�11 G1

p

Z 1

0

½fðk1 þ 1ÞA1ðsÞ þ ðk1 � 1ÞB1ðsÞ � 2½A1ðsÞ � B1ðsÞ�syge�sy

� fðk1 þ 1ÞA2ðsÞ þ ð1� k1ÞB2ðsÞ þ 2½A2ðsÞ þ B2ðsÞ�sygesy � sinðsxÞds ð15Þ

rð2Þ
y ðx; yÞ ¼ �2k�12 G2

p

Z 1

0

½fðk2 � 1ÞA3ðsÞ � ðk2 þ 1ÞB3ðsÞ þ 2½A3ðsÞ þ B3ðsÞ�sygesy � cosðsxÞds ð16Þ

sð2Þxy ðx; yÞ ¼
�2K�1

2 G2
p

Z 1

0

fðk2 þ 1ÞA3ðsÞ þ ð1� k2ÞB3ðsÞ þ 2½A3ðsÞ þ B3ðsÞ�sygesy sinðsxÞds ð17Þ
From Eqs. (6)–(8), we see that rð1Þ
y ðx; hÞ ¼ 0, sð1Þxy ðx; hÞ ¼ 0, rð1Þ

y ðx; 0Þ ¼ rð2Þ
y ðx; 0Þ, and sð1Þxy ðx; 0Þ ¼ sð2Þxy ðx; 0Þ for

all values of x and it is easily shown that this condition is equivalent to equations
fðk1 � 1ÞA1ðsÞ þ ðk1 þ 1ÞB1ðsÞ � 2½A1ðsÞ � B1ðsÞ�shge�sh þ fðk1 � 1ÞA2ðsÞ � ðk1 þ 1ÞB2ðsÞ
þ 2½A2ðsÞ þ B2ðsÞ�shgesh ¼ 0 ð18Þ

fðk1 þ 1ÞA1ðsÞ þ ðk1 � 1ÞB1ðsÞ � 2½A1ðsÞ � B1ðsÞ�shge�sh � fðk1 þ 1ÞA2ðsÞ þ ð1� k1ÞB2ðsÞ
þ 2½A2ðsÞ þ B2ðsÞ�shgesh ¼ 0 ð19Þ

k2½ðk1 � 1ÞA1ðsÞ þ ðk1 þ 1ÞB1ðsÞ þ ðk1 � 1ÞA2ðsÞ � ðk1 þ 1ÞB2ðsÞ�
¼ k1L½ðk2 � 1ÞA3ðsÞ � ðk2 þ 1ÞB3ðsÞ� ð20Þ
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�k2½ðk1 þ 1ÞA1ðsÞ þ ðk1 � 1ÞB1ðsÞ � ðk1 þ 1ÞA2ðsÞ � ð1� k1ÞB2ðsÞ�
¼ k1L½ðk2 þ 1ÞA3ðsÞ þ ð1� k2ÞB3ðsÞ� ð21Þ
where L ¼ G2=G1.
Let f1ðxÞ ði ¼ 1; 2Þ be the jumps of the displacements across the crack surfaces defined as follows:
f1ðxÞ ¼ u1ðx; 0Þ � u2ðx; 0Þ ð22Þ

f2ðxÞ ¼ v1ðx; 0Þ � v2ðx; 0Þ ð23Þ
It can be obtained that f1ðxÞ is an odd function, f2ðxÞ is an even function.
Applying the Fourier transforms to Eqs. (22) and (23), it can be obtained
A1ðsÞ þ A2ðsÞ � A3ðsÞ ¼ s�f1ðsÞ; B1ðsÞ þ B2ðsÞ � B3ðsÞ ¼ s�f2ðsÞ ð24Þ
Here a superposed bar indicates the Fourier transform through the paper. By solving six Eqs. (18)–(21) and

(24) with six unknown functions and substituting the solutions into Eqs. (16) and (17) and applying the

boundary conditions (6) and (7), it can be obtained
rð2Þ
y ðx; 0Þ ¼ �2G2

p

Z 1

0

s½a1ðsÞ�f1ðsÞ þ a2ðsÞ�f2ðsÞ� cosðsxÞds ¼ �r0; 06 x6 l ð25Þ

sð2Þxy ðx; 0Þ ¼
�2G2

p

Z 1

0

s½a3ðsÞ�f1ðsÞ þ a4ðsÞ�f2ðsÞ� sinðsxÞds ¼ 0; 06 x6 l ð26Þ

Z 1

0

�f1ðsÞ sinðsxÞds ¼ 0;
Z 1

0

�f2ðsÞ cosðsxÞds ¼ 0; x > l ð27Þ
where a1ðsÞ, a2ðsÞ, a3ðsÞ and a4ðsÞ are known functions. lim
s!1

a1ðsÞ ¼ b1, lims!1
a2ðsÞ ¼ b2, lims!1

a3ðsÞ ¼ �b2,
lim
s!1

a4ðsÞ ¼ �b1. The forms of, a1ðsÞ, a2ðsÞ, a3ðsÞ and a4ðsÞ can be seen in Appendix A, respectively. b1 and
b2 are non-zero constants. It can be written as follows
b1 ¼
1� k2 � Lþ k1L
ðk2 þ LÞð1þ k1LÞ

; b2 ¼
1þ k2 þ Lþ k1L
ðk2 þ LÞð1þ k1LÞ

ð28Þ
When ðl1; k1; k1Þ ¼ ðl2; k2; k2Þ, it can be obtained b1 ¼ 0, b2 ¼ 2
1þk1
. To determine the unknown functions

�f ðsÞ and �f2ðsÞ, the above two pairs of dual integral Eqs. (25)–(27) must be solved.
4. Solution of the dual integral equations

As in many of previous studies Erdogan and Wu (1993) and Zhang, 1986, in this study too, the problem
is solved under the assumption that the effect of the crack surface overlapping very near the crack tips is

negligible and there is a sufficiently large component of mode-I loading so that the crack essentially remains

open. It can be obtained that the jumps of the displacements across the crack surface are finite, differen-

tiable and continuum functions. Hence, the jumps of the displacements across the crack surface can be

expanded by the following series:
f1ðxÞ ¼
X1
n¼0

anP
ð1=2;1=2Þ
2nþ1

x
l

	 

1

�
� x2

l2

�1
2

; for 06 x6 l ð29Þ
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f2ðxÞ ¼
X1
n¼0

bn P ð1=2;1=2Þ
2n

x
l

	 

1

�
� x2

l2

�1
2

; for 06 x6 l ð30Þ

f1ðxÞ 
 0; f2ðxÞ 
 0; for xP l ð31Þ
where an and bn are unknown coefficients, P ð1=2;1=2Þ
n ðxÞ is a Jacobi polynomial (Gradshteyn and Ryzhik,

1980). The Fourier transform of Eqs. (29)–(31) are (Erdelyi, 1954)
�f1ðsÞ ¼
X1
n¼0

anQn
1

s
J2nþ2ðslÞ; Qn ¼

ffiffiffi
p

p
ð�1Þn

Cð2nþ 2þ 1
2
Þ

ð2nþ 1Þ! ð32Þ

�f2ðsÞ ¼
X1
n¼0

bnRn
1

s
J2nþ1ðslÞ; Rn ¼

ffiffiffi
p

p
ð�1Þn

Cð2nþ 1þ 1
2
Þ

ð2nÞ! ð33Þ
where CðxÞ and JnðxÞ are the Gamma and Bessel functions, respectively.
Substituting Eqs. (32) and (33) into Eqs. (25)–(27), it can be shown that Eq. (27) are automatically

satisfied. After integration with respect to x in ½0; x�, Eqs. (25) and (26) reduce to
2G2
p

X1
n¼0

anQn

Z 1

0

a1ðsÞ
s

J2nþ2ðslÞ sinðsxÞds
(

þ
X1
n¼0

bnRn

Z 1

0

a2ðsÞ
s

J2nþ1ðslÞ sinðsxÞds
)

¼ r0x;

06 x6 l ð34Þ

2G2
p

X1
n¼0

anQn

Z 1

0

a3ðsÞ
s

J2nþ2ðslÞ½cosðsxÞ
(

� 1�dsþ
X1
n¼0

bnRn

Z 1

0

a4ðsÞ
s

J2nþ1ðslÞ½cosðsxÞ � 1�ds
)

¼ 0;

06 x6 l ð35Þ
The semi-infinite integral in Eqs. (34) and (35) can be modified as (for 0 < x < l):
Z 1

0

a1ðsÞ
s

J2nþ2ðslÞ sinðsxÞds ¼
b1

2nþ 2 sin ð2n
h

þ 2Þ sin�1 x
l

	 
i
þ
Z 1

0

a1ðsÞ � b1
s

J2nþ2ðslÞ sinðsxÞds

ð36Þ
Z 1

0

a2ðsÞ
s

J2nþ1ðslÞ sinðsxÞds ¼
b2

2nþ 1 sin ð2n
h

þ 1Þ sin�1 x
l

	 
i
þ
Z 1

0

a2ðsÞ � b2
s

J2nþ1ðslÞ sinðsxÞds

ð37Þ
Z 1

0

a3ðsÞ
s

J2nþ2ðslÞ cosðsxÞds ¼
�b2
2nþ 2 cos ð2n

h
þ 2Þ sin�1 x

l

	 
i
þ
Z 1

0

a3ðsÞ þ b2
s

J2nþ2ðslÞ cosðsxÞds

ð38Þ
Z 1

0

a4ðsÞ
s

J2nþ1ðslÞ cosðsxÞds ¼
�b1
2nþ 1 cos ð2n

h
þ 1Þ sin�1 x

l

	 
i
þ
Z 1

0

a4ðsÞ þ b1
s

J2nþ1ðslÞ cosðsxÞds

ð39Þ
The semi-infinite integral in Eqs. (36)–(39) can be evaluated directly. Eqs. (34) and (35) can now be solved

for the coefficients an and bn by the Schmidt method (Yan, 1967). It can be seen as in Yan (1967).
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5. Intensity factors

The coefficients an and bn are known, so that the entire stress field can be obtained. However, in fracture
mechanics, it is important to determine stresses rð2Þ

y and sð2Þxy in the vicinity of the crack tips. rð2Þ
y and sð2Þxy

along the crack line can be expressed as:
rð2Þ
y ðx;0Þ ¼ �2G2

p

X1
n¼0

Z 1

0

½anQna1ðsÞJ2nþ2ðslÞ þ bnRna2ðsÞJ2nþ1ðslÞ� cosðsxÞds

¼�2G2
p

X1
n¼0

Z 1

0

½anQnf½a1ðsÞ � b1� þ b1gJ2nþ2ðslÞ þ bnRnf½a2ðsÞ � b2� þ b2gJ2nþ1ðslÞ� cosðsxÞds

ð40Þ

sð2Þxy ðx; 0Þ ¼
2G2
p

X1
n¼0

Z 1

0

½anQna3ðsÞJ2nþ2ðslÞ þ bnRna4ðsÞJ2nþ1ðslÞ� sinðsxÞds

¼ 2G2
p

X1
n¼0

Z 1

0

½anQnf½a3ðsÞ þ b2� � b2gJ2nþ2ðslÞ þ bnRnf½a4ðsÞ þ b1� � b1gJ2nþ1ðslÞ� sinðsxÞds

ð41Þ
An examination of Eqs. (40) and (41) shows that, the singular part of the stress field can be obtained from

Yan (1967) the relationships as follows:
Z 1

0

JnðsaÞ cosðbsÞds ¼
cos½n sin�1ðb=aÞ�ffiffiffiffiffiffiffiffiffi

a2�b2
p ; a > b

� an sinðnp=2Þffiffiffiffiffiffiffiffiffi
b2�a2

p
½bþ

ffiffiffiffiffiffiffiffiffi
b2�a2

p
�n
; b > a

8<
:

Z 1

0

JnðsaÞ sinðbsÞds ¼
sin½n sin�1ðb=aÞ�ffiffiffiffiffiffiffiffiffi

a2�b2
p ; a > b
an cosðnp=2Þffiffiffiffiffiffiffiffiffi

b2�a2
p

½bþ
ffiffiffiffiffiffiffiffiffi
b2�a2

p
�n
; b > a

8<
:

The singular part of the stress field can be expressed respectively as follows ðl < xÞ:
r ¼ 2G2b2
p

X1
n¼0

bnRnH ð1Þ
n ðxÞ; s ¼ 2G2b2

p

X1
n¼0

anQnH ð2Þ
n ðxÞ ð42Þ
where
H ð1Þ
n ðxÞ ¼ ð�1Þnl2nþ1ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

x2 � l2
p

½xþ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 � l2

p
�2nþ1

; H ð2Þ
n ðxÞ ¼ ð�1Þnl2nþ2ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

x2 � l2½xþ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 � l2

pq
�2nþ2
The stress intensity factors KI and KII can be written as following:
KI ¼ lim
x!lþ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2pðx� lÞ

p
� r ¼ 2G2b2ffiffi

l
p

X1
n¼0

bn
C 2nþ 1þ 1

2

� �
ð2nÞ! ð43Þ

KII ¼ lim
x!lþ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2pðx� lÞ

p
� s ¼ 2G2b2ffiffi

l
p

X1
n¼0

an
C 2nþ 2þ 1

2

� �
ð2nþ 1Þ! ð44Þ
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6. Numerical calculations and discussion

As discussed in the works Itou (1986) and Zhou andWang (2001), it can be seen that the Schmidt method

is performed satisfactorily if the first ten terms of infinite series to Eqs. (34) and (35) are retained. The
behavior of the sum of the series stays steady with the increasing number of terms in Eqs. (34) and (35). In all

computation, the materials are assumed to be the commercially available Iron, Nickel and Aluminum,

respectively. The material constants of Iron are k¼ 98 (· 109 N/m2) and l ¼ 77 (· 109 N/m2), respectively.

The material constants of Nickel are k¼ 108 (· 109 N/m2) and l¼ 66.5 (· 109 N/m2), respectively. The

material constants of Aluminum are k¼ 41.4 (· 109 N/m2) and l ¼ 41:4 (· 109 N/m2), respectively. The

dimensionless stress intensity factors K=r0 are calculated numerically. The results of the present paper are
shown in Figs. 2–7. From the results, the following observations are very significant:
Fig. 2. The stress intensity factor versus h for l ¼ 1:0 (the elastic layer and the half plane are the same material, aluminum).

Fig. 4. The stress intensity factor versus h for l ¼ 1:0 (material of the elastic layer is nickel, material of the half plane is iron).

Fig. 3. The stress intensity factor versus h for l ¼ 1:0 (material of the elastic layer is aluminum, material of the half plane is nickel).



Fig. 5. The stress intensity factor versus l for h ¼ 0:5 (material of the elastic layer is aluminum, material of the half plane is nickel).

Fig. 6. The stress intensity factor versus l for h ¼ 1:0 (material of the elastic layer is aluminum, material of the half plane is nickel).

Fig. 7. The stress intensity factor versus l for h ¼ 3:0 (material of the elastic layer is aluminum, material of the half plane is nickel).
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(i) In the present paper, the unknown variables of dual integral equations are the displacements across the

crack surfaces. To solve the dual integral equations, the jumps of the displacements across the crack
surfaces are directly expanded in a series of Jacobi polynomials. However, in the previous works Eng-

land (1965), Erdogan (1965), Rice and Sih (1965), Nisitani et al. (1993), Erdogan and Wu (1993), Dhal-

iwal et al. (1989), Das and Debnath (2001) and Comninou (1977), the unknown variables of dual

integral equations are the dislocation density functions, and need to solve the singular integral equa-

tions. This is the major difference. Contrary to the prevision solution of the interface crack, it is found

that the stress singularity of the present interface crack solution is of the same nature as that for the

ordinary crack in homogeneous materials. The solution of the present paper can be returned to the one

of the ordinary crack in the homogeneous materials as shown in Fig. 2.
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(ii) The aim of the present paper is to give an approximate approach to resolve the same problem as in

Calhoun and Lowengrub (1978). During the solving process, the mathematical difficulties are not

met, i.e. the oscillatory stress singularity and the overlapping of the crack surfaces do not meet. The

solutions in Dhaliwal et al. (1989), Das and Debnath (2001) and Calhoun and Lowengrub (1978) con-
tain the stress oscillating singularity.

(iii) The normal stress intensity factor KI=r0 increases almost linearly when the length of the crack in-
creases. However, the shear stress intensity factor KII=r0 decreases almost linearly when the length
of the crack increases as shown in Figs. 5–7. The shear stress intensity factor KII=r0 is much smaller
than the normal stress intensity factor KI=r0. The shear stress intensity factor KII=r0 may be negative
for some cases as shown in Figs. 3–7.

(iv) The normal stress intensity factor KI=r0 decreases when the thickness of the elastic layer increases.
However, the shear stress intensity factor KII=r0 increases when the thickness of the elastic layer in-
creases and it tends to zero for h=l > 4:0 as shown in Figs. 3 and 4. The solutions of this paper for
h=l > 4:0 are approximate to ones of a Griffith crack at the interface of two bonded dissimilar half-
planes. It means that the influence of the width of the elastic layer on the results is small for the case

h=l > 4:0.
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Appendix A
m1ðsÞ ¼ k2½ð1þ k1LÞ þ ð1� LÞe�4sh þ ðL� 2� k1L� 4h2s2 þ 4h2Ls2Þe�2sh�

m2ðsÞ ¼ Lfð1þ k1LÞ þ k1ðL� 1Þe�4sh þ ½k1 þ k21Lþ ðL� 1Þð1þ 4h2s2Þ�e�2shg

m3ðsÞ ¼ �ð�1þ k2 þ L� k1LÞ � ðk2 þ L� 1� k1LÞe�4sh

m4ðsÞ ¼ 2ðk2 þ L� 1� k1L� 2h2s2 þ 2h2s2k2 þ 4h2s2LÞe�2sh

m5ðsÞ ¼ ð1þ k2 þ Lþ k1LÞ þ ðk2 � Lþ 1� k1LÞe�4sh

m6ðsÞ ¼ �2ðk2 þ 1þ 2hð1þ k1ÞLsþ 2h2s2 þ 2h2s2k2Þe�2sh

m7ðsÞ ¼ 2ðk2 þ 1� 2hð1þ k1ÞLsþ 2h2s2 þ 2h2s2k2Þe�2sh

a1ðsÞ ¼
m3ðsÞ þ m4ðsÞ
m1ðsÞ þ m2ðsÞ

; a2ðsÞ ¼
m5ðsÞ þ m6ðsÞ
m1ðsÞ þ m2ðsÞ

; a3ðsÞ ¼
�m5ðsÞ þ m7ðsÞ
m1ðsÞ þ m2ðsÞ

; a4ðsÞ ¼
�m3ðsÞ þ m4ðsÞ
m1ðsÞ þ m2ðsÞ
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